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Roughening of chemically reacting interfaces
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There has been much interest recently in simple lattice-gas models of catalytic reactions. Using
Monte Carlo simulations, we investigate interfacial roughening in a model of a Langmuir-Hinshelwood
reaction which includes an effective repulsive interaction between the two reacting species. We measure
the width of the reactive zone between the two reactants and the roughness of this interface. It is found
that, when the interspecies repulsive interaction is nonzero, the interface roughness obeys the scaling law
w ~t5, with B= %. When there is no interspecies interaction, the interface roughness scales as ¢!/2. The

reactive-zone width also scales as ¢!/2 when there is no interspecies repulsion. With interspecies repul-
sion, however, we find that the reactive-zone width tends to a finite value at long times. We argue that in
this case the interface should be described by the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. 56,

889 (1986)] with v+=0 and A=0.

PACS number(s): 05.40.+j, 68.35.Fx, 68.35.Dv, 68.35.Bs

I. INTRODUCTION

There is much interest in the structure of interfaces
evolving under nonequilibrium conditions.  The
phenomenon of wetting [1-4] the surface structure of
diffusion-limited aggregation (DLA) and Eden clusters
[5], the structure of domain walls in lattice spin models
[6,7], and thin-film growth and epitaxy [8-10] are some
common examples. For lattice-gas models of Langmuir-
Hinshelwood reactions, an interface exists between the
two reactant species. Here, we investigate the roughen-
ing of this interface for a bimolecular model of a
Langmuir-Hinshelwood reaction. The model that we
study is described by the following elementary steps [11]:

A(g)+v— A(s),
B(g)+v—B(s),
A(s)+B(s)— AB(g)+2v ,

where (g) and (s) denote gas-phase and adsorbed particles,
respectively, and v denotes a vacant site on the lattice
used to simulate the catalytic surface. The structure of
the clusters formed in this model has previously been
studied by Ziff and Fichthorn [12], who simulated the
Langmuir-Hinshelwood reaction on an initially empty
square lattice. As a result of reaction and subsequent
desorption of nearest-neighbor AB pairs, clusters consist-
ing entirely of A or entirely of B are formed. They sug-
gested that these clusters are fractal, with a dimension of
approximately 1.8 [12]. Meakin and Scalapino [13] inves-
tigated the time dependence of the vacancy density, and,
on a square lattice, it was found to decay very slowly with
time, approximately obeying the power law N, ~¢ 005
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[13]. In this paper we attempt to provide a better funda-
mental understanding of the time evolution of such reac-
tion models by considering the evolution of the structure
of an initially flat interface between domains of 4 and B.
In particular, we show that the evolution of such an in-
terface may be described by the ideas used in studying
film growth.

It should be noted that interesting work [14—16] has
been carried out on the reactive lattice-gas system

A+B—C,

where the reactants 4 and B diffuse on the lattice. Be-
ginning with a lattice on which the concentrations of A4
and B are ¢ ,=~c 4 and ¢z =0 for x <0, and ¢, =0 and
cg=cpo for x >0, for the 4 and B are allowed to diffuse
and react. The width of the reactive region is predicted
to behave asymptotically as ¢!/® by a scaling theory [14],
and this behavior is confirmed by a simulation study [15].
Here, we also study the width of the reactive region in
our system, but, in addition, we consider the structure of
the interface between the reactive region and each of the
reactant domains. This interface is not defined in the
A + B —C system.

II. SIMULATION AND DEFINITIONS

The bimolecular region system is simulated on a square
lattice. Initially, the left half of the lattice is completely
filled with particles of species 4 and the right half is com-
pletely filled with particles of species B. Two columns of
sites between the 4 and B domains are left vacant in or-
der to allow adsorption. Starting with this initial
configuration, Monte Carlo simulations of the system are
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performed, as described below. Periodic boundary condi-
tions are applied in the vertical direction. The simula-
tions are performed on sufficiently wide lattices that the
reactive zone does not reach either the leftmost or the
rightmost column of sites.

A site is picked at random, and an adsorption event is
attempted. If the site is already occupied, the attempt
fails, and the procedure is repeated from the beginning.
If the site is vacant, a particle of species 4 or B is chosen
for adsorption with equal probability. If A4 is chosen, the
number n of nearest-neighbor sites occupied by particles
of species B is counted. The adsorption attempt is then
successful with a probability equal to s”, where 0<s < 1.
Similarly, the probability of success for adsorbing a B
particle is given by s” where n is the number of nearest-
neighbor sites occupied by A particles. This ansatz simu-
lates an effective repulsive interaction between the 4 and
the B species [17]. If adsorption fails, the procedure is re-
peated from the beginning. If adsorption of an A particle
is successful, a nearest-neighbor site occupied by a B par-
ticle is chosen at random and reaction occurs; the newly
adsorbed A particle and the chosen nearest-neighbor B
particle desorb immediately. If there are no B particles
in the nearest-neighbor sites, no reaction occurs, and the
procedure is repeated. The successful adsorption of a B
particle is similarly treated. The parameter s, which
occurs in computing the probability of adsorption of a
particle into a vacant site, is varied between zero and uni-
ty in the simulations.

For each iteration, regardless of the success of the at-
tempted adsorption event, time is incremented by one
Monte Carlo step. In our results we report the time in
units of Monte Carlo steps per site (MCS) for lattices of
size (10000X200). Typical configurations of the lattice
are shown in Figs. 1(a) and 1(b) for s=1.0 and 0.5, respec-
tively. These configurations are obtained after times of
approximately 6X10° and 6X10* MCS, respectively.
Each column of lattice sites is labeled by x, with x tend-
ing to — oo far to the left and x tunneling to + oo far to
the right. We label the rows by y. It can be seen in these
two figures that there are two kinds of A4 particles: those
which are connected by nearest-neighbor A4 particles to
x = — o0, and those which are not similarly connected.
Similarly, the B particles can be divided into two kinds
according to their connectivity to x =+ . It is, there-
fore, possible to define an 4 domain consisting of all the
A particles connected by other A particles to x =— oo,
and a B domain consisting of all the B particles connect-
ed by other B particles to x =+ . The external perime-
ter of each of these domains consists of particles which
border a “reactive” zone between the two domains. This
reactive zone consists of “islands” of 4 and B embedded
in a “sea” of vacant sites. We take the external (reactive)
perimeter of the A domain to consist of those A particles
in the 4 domain which have nearest-neighbor vacant
sites belonging this sea of vacant sites. Within each of
the 4 and B islands and within the 4 and B domains,
there can also be ‘“lakes” with islands embedded, and so
on. Hence there are clusters of 4, of B, and of vacant
sites in the reactive zone.

We can associate a spin 0 = —1 with each particle of

species A4, a spin of o =1 with each particle of species B,
and a spin o =0 with each vacant site. Then the average
spin {o(x))=m (x) for each column of lattice sites can
be defined. Using this quantity, we can measure the
width of the reactive zone by w,, =({x2), —(x )2 )2
where the averages are defined by

N S S S S S S S S S S S S S S A S S S S S S
blolslelelelololslolotelolotololololo ol sto o sto otoTototoTo olo o o o o otoloTo o o To o o To Lo Told
0000000000000 000V00C000000CCO00000000000CO0000000C
20000Q000000000000000000Q0000000000000000000COR00C
0000000000000 V00O000Q000000 QOVOOVVO0V00O000VOCOO000C
2000090000000 000Q000000000 090000000000 AOO0C
2000000000000 000Q00000000000 QOOO00O0V00O00OCOOD000C
000000000000 QV0QC0000000 Q0000000000000 000QQ0C
300000000000000C0 O Q000 000 00QOOQOOOOBOOOOOOL
30000000000000000 O 0000 000 Q000000000Q00Q0C
0000000000000 00000 00 000000 Q000000000000 000C
200000000000000000 O 000000000 OO000000000000000C
JO0000000 0000000 O O O O 0000000000000 00000000C
000000000 000 ° ® 000000000  OOQ0OO0000000C
500000000000000 O O ® 00 00 0000 0000000000000C
20000000000 00 Q o (s} Q0000000000000
20000000000 O O o] o 00 _000000000C000C
0000000000000 L © 00 000000000 ¢
0000000000000 [o] Q ©_ O 000 O 00 ¢
500000000000 00 O elelele} o Q 000 ~O¢
Y000 O000CO0OQO! O 00 ee ® 00000 OO000O0C
50 Q0000000 e} O ® @ ® 00 O O O

Q00000000 o O ®® ® OO o o oC
bl 00 00 000 ® O e [Se]
2 OO0 _ 0000 o e L] <
bl Jele} o ® <
> Q 00 Ld

o _O
bl °
bl Ll
o

(a)

)OOOOOOOOOOOO000OOO0O0OOOOOOOOOOOGOOOOOOOOOOOOOOO(
0000000000000 00000000000VCVCO00V00VVOVOO:! OOOOOOOOO(
3000000000000000000000000000O0OO000000000000000QO!

)OOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOO(
0000000000 ooooooooooooo
)OOOOOOOOOOOOOOO felo] OO OOOOOOOOOO(
)OOOOOOOOOOOOOOOO o e 000000000C
5000 000000000000 00000000¢
00! cO
> (] [s3Re}
o

(b)

FIG. 1. (a) A typical configuration after approximately
6X10* MSC for s=1.0. Note the predominance of large clus-
ters and overhangs in the interfacial region. (b) A typical
configuration after approximately 6X 10* MCS for s=0.5. The
vacant sites are restricted to a realtively narrow zone between
the A and B domains and, in contrast to (a), there is an absence
of large clusters within the zone of vacant sites.
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x=+o0 x =+
(x") = 3 =x"[mx+1)—m(x)] S [mx+D)—m(x)]. (1)

Thus w,, is the root-mean-square width of the reactive
zone, i.e., the region of the lattice where reaction events
may possibly occur. For the case in which s is equal to
unity, w,, is a suitable measure for the reactive-zone
width. However, when s is not equal to unity, the width
of the reactive zone, consisting of the domain of vacant
sites between the A and B domains, reaches a constant
value rather early in the simulations. As will be seen
below, the quantity w,, in that case measures the width of
meandering of the reactive zone.

Two measures which describe the roughness of the in-
terfacial region between the two reacting species can be
defined. The first measure of roughness is obtained by
considering the distribution of sites forming the external
perimeters of each of the 4 and B domains. Note that
each of these domains has an external perimeter so that
there are two interfaces which are statistically equivalent
by symmetry. Using the distribution of external perime-
ter sites, we can obtain the average

(x"),=Sx"/N, , (2)
=2/ N,

where N, is the number of sites which form the external
perimeter and the sum is over these sites. The roughness
measure w,, is then defined as w;, =({x?2),—{(x)%)"2
This measure of roughness is similar to one that has been
previously used to characterize the diffusion frontier or
interface [18].

The second measure of roughness that we use is the
same as the definition usually used in studies of film
growth in models where there are holes and overhangs in
the epitaxial layer [9,10]. Consider the external perime-
ter of the 4 domain. For each row y of lattice sites, there
can be more than one lattice site belonging to the exter-
nal perimeter. We define the interface position x , for
each row of sites to be given by the minimum value of x
among all the external perimeter sites in that row. Then
the roughness w, of the interface between the reactive
zone and the 4 domain is given by

w,=({x%)—{(x )%, 3)

where the averages are taken over all the rows of the lat-
tice. A similar definition of wp holds for the interface of
the B domain, except that for the B domain, the interface
position xp for each row of sites is given by the max-
imum, rather than the minimum, value of x for the exter-
nal perimeter sites in that row, i.e., the quantity
(xp—x 4) for each row of sites is a measure of the width
of the reactive zone for that row. In analogy with film
growth models, the parameter s introduced earlier can be
used to modify the roughness of the interface: the small-
er the value of s, the smoother the interface. This is
clearly illustrated in Figs. 1(a) and 1(b). Since the
domains of 4 and B are equivalent we take the average of

w4 and wy as a measure of the roughness w, of the sur-
face of these domains.

III. RESULTS AND DISCUSSION

As the reaction proceeds, the interface becomes pro-
gressively rougher, and there is no time-independent
characteristic length scale in the problem. Thus we ex-
pect the interface roughness w to scale as w ~t? [8-10].
We performed simulations for values of s ranging from
0.5 to 1.0 using lattices of heights ranging between 100
and 10000. The data shown in Figs. 2(a) and 2(b) are the
results of simulations using lattices of height 10000 lat-
tice constants for s=1.0 and 0.5, respectively. For each
value of s, 100 simulation runs was performed and aver-
aged.

For s=1.0, the exponent S is equal to 1/2 for both w,
and w,. Although both w, and w, scale in the same
manner with time, w, is always larger than w,. The
width of the reactive zone, as measured by w,,, also in-
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FIG. 2. (a) Time dependence of w,,w,, and w,, for the case in
which s=1.0. (b) Time dependence of w,,w,, and w,, for the
case in which s=0.5.
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creases with time as t!/2, and is always larger than both
the roughness measures w, and w,. For s=0.5 the ex-
ponent B is found to be 1/4 for both w, and w,. In con-
trast to the case in which s=1.0, w;, and w, are equal to
each other when s=0.5. Initially, the width w,, of the
reactive zone is larger than w, and w,. However, for
short times w,, apparently does not obey a power law and
grows slower than w;, and w,. Therefore w, and w, ap-
proach w,, with time. Consequently, in the long-time
limit, w,, becomes equal to the roughness of the interface
defined by the other two metrics. For our simulations
with s=0.5, this occurs after approximately 10* MCS.
Subsequently, both the roughness of the interface and the
width of the reactive-zone scale with time as t!/4. We
have also performed simulations for values of s between
1.0 and 0.5. These simulations all show results similar to
the case in which s=0.5.

For the case in which s=1.0, the fluctuations in parti-
cle density resulting from the formation of clusters in the
reactive zone play a significant role in interfacial
roughening. This situation is illustrated in Fig. 1(a). For
s=0.5, a typical interfacial configuration of which is seen
in Fig. 1(b), such fluctuations are insignificant. We have
mentioned that w,, is a measure of the width of the reac-
tive zone and, hence, the region over which clusters can
be expected. Since w,, increases indefinitely with time,
one might suspect that fluctuations resulting from cluster
formation are more important than we have implied for
s=0.5. For the case in which s=1.0, w,, is a good mea-
sure of the width of the reactive zone. For s=0.5, how-
ever, w,, is not a good measure of this width. This is be-
cause, as may be seen in Fig. 1(b), the region over which
reaction can occur consists of only a narrow zone of va-
cant sites between.the 4 and B domains. Fluctuations in
particle density within each of the 4 and B domains are
insignificant, in contrast to the case for which s is equal
to 1.0. Thus, for s=0.5, w,, is really a measure of the
width of meandering of the reactive zone.

The width of the reactive zone for s=0.5 is better mea-
sured by the quantity {xz —x , ), with x5 and x , defined
in Sec. II. From the simulations we find that this quanti-
ty diverges with time for s=1.0 (with an exponent of ap-
proximately 0.48), but for s less than unity, it converges
to an s-dependent value. A plot of some simulation re-
sults is shown in Fig. 3. Hence we conclude that for s less
than unity the length scale of the clusters in the reactive
zone becomes infinitesimally small compared to the
length scale of the interfacial roughness.

We now consider the results for s=1.0. It can be seen
that the width w,, of the reactive zone behaves
diffusively. Since this width is obtained from the average
spin m (x)={o(x)) of the sites in each column x, it is,
thus, interesting to compare the interfacial roughness in
our reaction system with that in the diffusion system
d0 /3t =V?0, where the boundary conditions are
o(—o0,y)=—1and o(,y)=1, and the initial condition
is a step function at x=0. For this diffusion system, the
width of the average spin m (x)={o(x)) profile also
satisfies w,, ~t!/2. The scaling properties of the diffusion
hull have been studied previously by Sapoval, Rosso, and
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FIG. 3. Time dependence of the reactive-zone width mea-
sured by (x5 —x 4 ) for s less than unity.

Gouyet [18]. It can be deduced from their results that
the roughness measure w, obey the scaling w;, ~t#, where
B is approximately 0.286 implying that, in the long-time
limit, the diffusion hull is smooth on the length scale of
w,, which scales as ¢'/2. In the case of the reaction sys-
tem studied here, however, we find that w, also scales as
t12, Therefore the roughness of the external perimeter
in this model grows as fast as the width of the reactive
zone, i.e., the “fingers” of the 4 and B domains have the
same length scale as the width of the reactive zone. This
difference between the diffusion system and the reaction
system arises from particle-particle correlations that exist
in the latter as a result of the removal of nearest-neighbor
AB pairs. In the diffusion system, the distribution of par-
ticles is nonuniform but random. In the reaction system
it is nonuniform and nonrandom, and one is more likely
to find an 4.4 or a BB nearest-neighbor pair in the reac-
tion system than in the diffusion system.

We can also gauge the importance of cluster formation
at the interface by comparing w, with w,. If overhangs
in the interface are important, then w;, will be different
from w,. This, of course, is the situation for s=1.0. For
s=0.5, however, w, and w, are the same [cf. Fig. 2(b)].
Overhands are thus not significant for s=0.5. Since the
formation of clusters is related to the presence of
overhangs (more overhangs implyng easier cluster forma-
tion), we conclude that for s=0.5 fluctuations due to clus-
ter formation are not important.

We have defined an 4 domain and a B domain in our
reaction system. Between these domains is a domain of
vacant sites which shares an interface with each of the 4
and B domains. Thinking in terms of film growth, we can
consider the evolution of the reaction system to be the
growth of this “film” of vacant sites. There are
“overhangs” and ‘“holes” in the domain of vacant sites
just as in, for instance, ballistic deposition models [9,10]
of film growth. However, there are two differences be-
tween the growth of the domain of vacant sites studied
here and the growth of various deposition models.

First, in the reaction model, growth can occur at any
point along the internal or external perimeter of the
domain, whereas, in film-growth models, deposition of
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particles, and hence film growth, occurs only at exposed
points of the external perimeter. Second, in the reaction
models, as mentioned earlier, there are clusters of vacant
sites embedded in the 4 and B domains, and, conversely,
there are also clusters of 4 and B particles embedded in
the domain of vacant sites. Upon adsorption of a single
A or B particle, possibly followed by subsequent reaction
and desorption of an AB pair, the connectivity of these
clusters to each of the domains may be changed. For ex-
ample, a cluster of vacant sites initially completely em-
bedded in the 4 domain and separated from the domain
of vacant sites by only a single A particle will become
connected to this latter domain if that A4 particle reacts
and is removed from the lattice. Thus, in contrast to film
growth models where deposition and thermal desorption
involves only one particle at a time, in the reaction mod-
el, the film of vacant sites can ‘“‘adsorb” or ‘“‘desorb’” more
than one vacant site at a time. This type of fluctuation in
the interface positions has been observed in diffusion
fronts where it has been referred to as intercalation noise
[18,19].

Despite these differences it is, nevertheless, interesting
to discuss the roughening of the film of vacant sites in our
reaction system by considering the general stochastic
differential equation [8-10,20-22] which describes film
growth,

%ZR(Vh,VZh, )=Vt 4)

At least in the case of s=0.5, the simulation results can
be rationalized using this equation. Here, R is the contri-
bution associated with the dynamics of the addition or re-
moval of particles from the film, j, is the flux due to
thermal diffusion, and % is the &-function correlated
noise. The Edwards-Wilkinson [22] and the Kardar-
Parisi-Zhang (KPZ) [8] equations are two special cases of
this general form. For the reaction system that we study
here, no thermal diffusion occurs and j, is zero.

We argue that this equation should be sufficiently gen-
eral to describe the reaction interface when the interface
structure does not include overhangs and holes. The
rates of adsorption on and desorption from the zone of
vacant sites at any point can then be described by the
term R, which depends on the local nature of the reaction
interface. This is adequate as long as the adsorption and
desorption are local events and do not involve, for in-
stance, the desorption of a cluster of A4 particles as a re-
sult of the reaction of a single A particle which connects
this cluster to the 4 domain. Such an event cannot de-
pend on just the local nature of the interface because the
connectivity of the particles in the cluster must be con-
sidered. When s is not equal to unity, overhangs and
holes are not significant since w, =w),. This implies that
the contribution of cluster (nonlocal) desorption or ad-
sorption is not significant. Thus the time evolution of the
zone of vacant sites occurs through the addition or remo-
val of single sites, and, therefore, it is plausible that Eq.
(4) with R depending only on the local nature of the inter-

face and with 7 8-function correlated in space and time
can describe the interfacial evolution for s not equal to
unity.

We now consider the form of the term
R (Vh,V?h, . ..). In our model we have included a repul-
sive interaction between an A (B) particle attempting to
adsorb in a vacant site and the nearest-neighbor adsorbed
B( A) particles. A consequence of this interaction is a
higher rate of removal of vacant sites from the ‘hills”
than from the “valleys™ in the film of vacant sites. As a
result of this, there is a term of the form vV2h in R,
where v may be interpreted as a surface tension
[8-10,20-22].

In our reaction model, it is also clear that the growth
velocity of the film is dependent on the local slope of the
film surface. The density of sites where growth can occur
is higher if the film surface is along one of the principal
axes of the lattice than if it is along a diagonal. Conse-
quently, there is lateral coupling in the interface evolu-
tion, and we expect nonlinear terms to be present in R.
To lowest order, we can, therefore, expect a term of the
form A|VA|? to occur in R, where A gives the strength of
this lateral coupling [8]. In order to test this idea, simu-
lations were performed with a diagonally oriented inter-
face between the 4 and B domains. The average width
(x 4—xp) of the zone of vacant sites for s=0.5 that was
obtained is the same as that obtained in the simulations
discussed above in which the interface between 4 and B
is oriented along one of the axes of the square lattice. In
both cases (x , —xp) is approximately 2.55+0.05 lattice
constants. Since (x,—xp) is determined by a balance
between reactive adsorption and nonreactive adsorption
of A and B particles onto the square lattice and, hence,
depends on the structure of the interface, we conclude
that the structure of the interface is not depended upon
its average orientation. Therefore R (Vh,V?h, . ..) must
not contain any term dependent on the slope of the inter-
face, and the equation for the time evolution of the inter-
face is of the KPZ form 9k /3t =A|Vh[*+vV2h +7, with
v#0 and A=0 (Edwards-Wilkinson equation). For this
case the exponent S is equal to L. This is supported by
the simulation results for w, and w, for s=0.5 (and for
other values of s between 1.0 and 0.5).

When s=1.0, we have seen that the roughness in-
creases as 772, and not as ¢'/*. Intercalation noise be-
comes important in this case, and the equation describing
the interfacial evolution must be different from that for
the case in which s is not unity. It was pointed out above
that in the reaction model there are clusters embedded in
each of the A, B, and vacancy domains, and these clus-
ters can participate in the growth of the vacancy domain.
For the case in which s=1.0, the contribution of this pro-
cess to the growth of the vacancy domain dominates the
contribution from the addition or removal of a single va-
cant site. Thus it is reasonable that the interfacial evolu-
tion equation is reduced to 9k /3t =7, and we then ex-
pect an exponent 3 equal to +. However, we should point
out that the noise in the reaction system may not be 8-
function correlated in space and time, in which case the
equation dh /9t =m would not necessarily yield an ex-
ponent of f=1.



IV. CONCLUSIONS

We have studied the interface between adjacent
domains of reactants in a bimolecular Langmuir-
Hinshelwood reaction. It was found that the scaling ex-
ponent of the interface roughness depends upon the in-
teraction between the reacting species. For the case
s <1, which implies a repulsive interaction between the
two species, the interfacial roughness scales as '/, We
argue that for s less than unity the KPZ equation with
v#0 and A=0 is a valid description of the interfacial
roughening, and thus a scaling of ¢!/* is to be expected.
Our argument depends upon the width of the reactive
zone becoming infinitesimally small compared to the
roughness of the reaction interface in the long-time limit.
The simulation results support this for the case when s is
less than unity.

For s=1, the reactive-zone width increases indefinitely
with time. The reactive zone itself becomes occupied by
clusters which grow indefinitely. Therefore, for the case
in which s is equal to unity, the idea of a reactive zone re-
stricted to a narrow region between two adjacent
domains is not valid. Since the clusters participate in the
roughening of the reactive interface, we conclude that the
“noise” term in the KPZ equation dominates the terms in
the interface evolution equation which describes the addi-
tion or removal of single sites to the zone of vacant sites.
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Then, it is plausible that 34 /3t =m, which implies the ex-
ponent B= %, describes the interface evolution.

It should be noted that our results are consistent with
simulation results for the roughening of the interface be-
tween the spin-up and spin-down domains of an Ising
model [7]. There, the interface roughness is simply taken
to be the quantity w,, that we have defined here. For
temperatures below the critical temperature, w,, in-
creases as ¢!/, At the critical temperature, it was found
that w,, increases as t!/2 [7). The arguments that we
have used to justify describing the reaction interface with
the KPZ equation can similarly be used to understand
the Ising model simulations [7]: below the critical tem-
perature the length scale of spin clusters is not so large as
the roughnes of the interface, and the time evolution of
the latter may be described by the KPZ equation with
v#0 and A=0. At the critical temperature fluctuations
become important, and the growth of the interfacial re-
gion between the spin-up and the spin-down domains be-
comes dominated by the addition or removal of clusters
rather than by the addition or removal of single spins.
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